
1. Define Binary Tree

Answer:

A normal tree has no restrictions on the number of children each node can have. A
made of nodes, where each node contains a "left" pointer, a "right" pointer, and a data element.

There are three different types of binary trees:

 Full binary tree: Every node other than leaf nodes has 2 child nodes.
 Complete binary tree: All levels are

filled in as far left as possible.
 Perfect binary tree: All nodes have two children and all leaves are at the same level.

2. How to implement a Tree data

3. How to implement Pre-order Traversal

Answer:

For traversing a (non-empty) binary tree in pre
every node N starting from root node of the tree:

 (N) Process N itself.
 (L) Recursively traverse its

again.
 (R) Recursively traverse its

again.

Viva Question with solution

Tree Data Structure

A normal tree has no restrictions on the number of children each node can have. A
made of nodes, where each node contains a "left" pointer, a "right" pointer, and a data element.

There are three different types of binary trees:

: Every node other than leaf nodes has 2 child nodes.
: All levels are filled except possibly the last one, and all nodes are

filled in as far left as possible.
: All nodes have two children and all leaves are at the same level.

data-structure? Provide some code

order Traversal of Binary Tree using Recursion

empty) binary tree in pre-order fashion, we must do these three things for
starting from root node of the tree:

(L) Recursively traverse its left subtree. When this step is finished we are back at N

(R) Recursively traverse its right subtree. When this step is finished we are back at N

A normal tree has no restrictions on the number of children each node can have. A binary tree is
made of nodes, where each node contains a "left" pointer, a "right" pointer, and a data element.

filled except possibly the last one, and all nodes are

: All nodes have two children and all leaves are at the same level.

order fashion, we must do these three things for

subtree. When this step is finished we are back at N

subtree. When this step is finished we are back at N

4. What is Binary Heap?

Answer:

A Binary Heap is a Binary Tree

 It’s a complete tree (all levels are completely filled except possibly the last level and the
last level has all keys as left as possible). This property of Binary Heap makes them
suitable to be stored in an array.

 A Binary Heap is either Min Heap
must be minimum among all keys present in Binary Heap. The same property must be
recursively true for all nodes in Binary Tree. Max Binary

 10

 / \

 20 100

 /

 30

5. What is Binary Search Tree?

Answer:

Binary search tree is a data structure that quickly allows to maintain a

 It is called a binary tree because each tree node has maximum of two children.
 It is called a search tree because it can be

O(log n) time.

Binary Tree with following properties:

tree (all levels are completely filled except possibly the last level and the
last level has all keys as left as possible). This property of Binary Heap makes them
uitable to be stored in an array.

Min Heap or Max Heap. In a Min Binary Heap, the key at root
must be minimum among all keys present in Binary Heap. The same property must be
recursively true for all nodes in Binary Tree. Max Binary Heap is similar to MinHeap.

 10

 / \

 15 30

 / \ / \

 40 50 100 40

What is Binary Search Tree?

is a data structure that quickly allows to maintain a sorted list

because each tree node has maximum of two children.
because it can be used to search for the presence of a number in

tree (all levels are completely filled except possibly the last level and the
last level has all keys as left as possible). This property of Binary Heap makes them

. In a Min Binary Heap, the key at root
must be minimum among all keys present in Binary Heap. The same property must be

Heap is similar to MinHeap.

sorted list of numbers.

because each tree node has maximum of two children.
used to search for the presence of a number in

The properties that separates a binary search tree from a regular binary tree are:

 All nodes of left subtree are less than root node
 All nodes of right subtree are more than root node
 Both subtrees of each node are also BSTs i.e. they have the above two properties

6. Classify Tree Traversal Algorithms. Provide some visual explanation.

Answer:

Tree Traversal algorithms can be classified broadly in two categories:

 Depth-First Search (DFS) Algorithms
 Breadth-First Search (BFS) Algorithms

Depth-First Search (DFS) Algorithms have three variants:

1. Preorder Traversal (current-left-right)— Visit the current node before visiting any nodes
inside left or right subtrees.

2. Inorder Traversal (left-current-right)— Visit the current node after visiting all nodes
inside left subtree but before visiting any node within the right subtree.

3. Postorder Traversal (left-right-current) — Visit the current node after visiting all the
nodes of left and right subtrees.

7. Explain the difference between Binary Tree and Binary Search Tree with an example?

Answer:

Binary tree: Tree where each node has up to two leaves

 1

 / \

2 3

Binary Search Tree (BST): Used for
nodes with values less than the parent node, and where the right child
values greater than or equal to the parent.

Explain the difference between Binary Tree and Binary Search Tree with an example?

: Tree where each node has up to two leaves

: Used for searching. A binary tree where the left child contains
nodes with values less than the parent node, and where the right child only contains nodes with
values greater than or equal to the parent.

Explain the difference between Binary Tree and Binary Search Tree with an example?

. A binary tree where the left child contains only
contains nodes with

 2

 / \

1 3

8. What is AVL Tree?

Answer:

AVL trees are height balancing binary search tree. It is named after Adelson-Velsky and
Landis, the inventors of the AVL tree. AVL tree checks the height of the left and the right sub-
trees and assures that the difference is not more than 1. This difference is called the Balance
Factor. This allows us to search for an element in the AVL tree in O(log n), where n is the
number of elements in the tree.

The balance factor of a node (N) in a binary tree is defined as the height difference:

BalanceFactor(N) = height(left_sutree(N)) − height(right_sutree(N))

// BalanceFactor(N) belongs to the set {-1,0,1}

If the balance factor doesn’t equal -1,0, or 1 then our tree is unbalanced, and we need to perform
certain operations (called rotations) to balance the tree. Specifically we need to do one or more
of 4 tree rotations:

 Left Rotation,
 Right Rotation,
 Left Right Rotation,
 Right Left Rotation.

9. What is Balanced Tree and why is that important?

Answer:

A tree is said to be balanced only when all three conditions satisfy:

 The left and right subtrees height differ by at most one
 The left subtree is balanced
 The right subtree is balanced

Height-balancing requirement:

 A node in a tree is height-balanced if the heights of its subtrees differ by no more than 1.
 A tree is height-balanced if all of its nodes are height-balanced.

In a balanced BST, the height of the tree is log n where n is the number of elements in the tree.
In the worst case and in an unbalanced BST, the height of the tree can be upto n which makes it
same as a linked list. In the worst case each of the operations (lookup, insertion and deletion)
takes time O(n) that shall be avoided.

Balanced BST maintains h = O(log n) so all operations run in O(log n) time.

10: Why do we want to use Binary Search Tree?

Answer:

If we implement a balanced binary search tree, we can always keep the cost of insert(),
delete(), lookup() to O(log n) where n is the number of nodes in the tree - so the benefit
really is that lookups can be done in logarithmic time which matters a lot when n is large. This is
much better than the linear time O(n) required to find items by key in an (unsorted) array, but
slower than the corresponding operations on hash tables.

11. Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty
binary search tree. The binary search tree uses the usual ordering on natural numbers. What is the in-
order traversal sequence of the resultant tree?

Answer:

0 1 2 3 4 5 6 7 8 9

12. Consider the following rooted tree with the vertex P labeled as root

What will be the order in which the nodes are visited during in-order traversal?

Answer:

SQPTRWUV

13. Insert the following sequence of elements into an AVL tree, starting with an empty
tree: 10, 20, 15, 25, 30, 16, 18, 19.

Answer:

14. Delete 30 from given AVL tree?

Answer:

15. what will be the LL rotation of the following problem

Answer:

16. what will be the RR rotation of the following problem

Answer:

17. what will be the LR rotation of the following problem

Answer:

18. what will be the RL rotation of the following problem

Answer:

